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Abstract In this paper, we present a novel global optimisation approach for the general
solution of multi-parametric mixed integer linear programs (mp-MILPs). We describe an
optimisation procedure which iterates between a (master) mixed integer nonlinear program
and a (slave) multi-parametric program. Moreover, we explain how to overcome the presence
of bilinearities, responsible for the non-convexity of the multi-parametric program, in two
classes of mp-MILPs, with (i) varying parameters in the objective function and (ii) simulta-
neous presence of varying parameters in the objective function and the right-hand side of the
constraints. Examples are provided to illustrate the solution steps.

Keywords Multi-parametric mixed-integer linear programming · Global optimization

1 Introduction

Multi-parametric programming refers to a class of optimisation problems which involve some
type of bounded uncertainty and/or variability within the mathematical model. A typical and
general multi-parametric program is of the following form:

z(θ) = min
x,y

f (x, y, θ),

s.t. h(x, y, θ) = 0,

g(x, y, θ) ≤ 0,

x ∈ X ⊆ R
n, y ∈ {0, 1}m,

θ ∈ �,
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Table 1 Classes of
multi-parametric programming
algorithms

mp-LP [10,14,16,29,31–33,52]

mp-QP [11,20,62]

mp-MILP [1,18,34,37,38]

mp-MIQP [20]

mp-NLP [2,5,6,17,28,36]

mp-MINLP [17,43,44]

mp-GO [21]

mp-DO [54–57]

Table 2 Applications of
multi-parametric programming to
MPC

Hierarchical decentralised control [23]

Hybrid control [8,15,42,54]

Linear discrete systems [11,20,45,59,62]

Non-linear control [60]

Robust control [12,35,57,58]

Table 3 Other applications of
multi-parametric programming

Drug delivery systems [19,22]

Dynamic programming [8,25]

Game theory [23,24]

Pro-active scheduling [50,51]

Supply chain [48]

where, x is the vector of continuous optimisation variables, y is the vector of binary
optimisation variables and θ is the vector of bounded parameters (θ L ≤ θ ≤ θU ); f is
a scalar function and h, g are general vectorial functions.

Multi-parametric programming has recently received considerable attention in the open
literature (see [46]), especially due to its important application to model predictive control
(MPC)—see [47]. Various classes of (1) have been studied, see Table 1, with corresponding
important developments and applications in control, see Table 2, and other areas, Table 3.

Despite the above major advances, many important classes of Problem (1) have not yet
been fully addressed. One important class is the general multi-parametric mixed integer linear
program, of the following form:

z(θ) = min
x,y

c(θ)T · x + d(θ)T · y,

s.t. A(θ)x + E(θ)y ≤ b(θ),

�(θ)x + �(θ)y = γ (θ),

x ∈ X ⊆ R
n, y ∈ {0, 1}m,

θ ∈ �.

(2)

where, c, d , A, E , �,�, b and γ are real matrices linearly dependent on θ, with appropriate
dimensions. Problem (2) has applications in many areas, including pro-active scheduling
and hybrid control. Logical decisions or switches are described by binary variables, as for
instance in hybrid control the description of non-linear systems by sets of piecewise convex
approximations.
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Acevedo and Pistikopoulos [1] proposed the first multiparametric algorithm to address
mixed-integer linear programming problems, involving varying parameters in the right-hand
side of the constraints. The algorithm which was based on a branch and bound approach, solv-
ing at each node a mp-LP problem, was shown to be computationally expensive. Pertsinidis
et al. [44] proposed an algorithm based on a master/slave iteration procedure, for the solution
of single parameter problems (i.e. θ is scalar); while Dua and Pistikopoulos [18] extended
their approach to address the general multi-parametric case. Recently, Li and Ierapetritou
[37,38] presented an algorithm to address general multi-parametric linear programs, based
on a branch and bound approach.

In this work, we first describe a novel algorithm to solve multi-parametric mixed-integer
linear programming problems, involving varying parameters in the objective function (OFC
mp-MILP):

z(θ) = min
x,y

c(θ)T · x + d(θ)T · y,

s.t. Ax + Ey ≤ b,

�x + �y = γ,

x ∈ X ⊆ R
n, y ∈ {0, 1}m,

θ ∈ �,

(3)

and then, an extension for the solution of general multi-parametric mixed-integer linear pro-
gramming problems, involving varying parameters in the objective function and the right-
hand side of the constraints (RIM mp-MILP):

z(θ) = min
x,y

c(θ)T · x + d(θ)T · y,

s.t. Ax + Ey ≤ b(θ),

�x + �y = γ (θ),

x ∈ X ⊆ R
n, y ∈ {0, 1}m,

θ ∈ �.

(4)

The algorithms described hereto follow the early developments presented in Pertsinidis
et al. [44] and Dua and Pistikopoulos [18]. The principal idea is to iterate between a master
problem, where we solve to global optimality a mixed integer non-linear program (MIN-
LP); and a slave problem, involving the solution of a multi-parametric program, obtained by
fixing the binary variables to the previously computed optimal MINLP solution. The main
challenge resides in the slave problem, because the presence of bilinearities implies that it is
a non-convex problem. Notwithstanding, we circumvent the use of global optimisation tools.
We develop a new multi-parametric linear programming (mp-LP) algorithm, based on the
sensitivity theory [27] and singularity theory [7], which easily handles the bilinearities and
frees the slave problem from the need of any global optimisation procedure [21].

This paper is organised in the following way. In Sect. 2 we describe the two-stage approach
to solve OFC mp-MILP problems as in (3). Then, we present the master problem and its
solution steps, and then, we present a detailed description of the new mp-LP algorithm,
establishing the links with our previous work [46]. Section 3 describes a general procedure
to address RIM mp-MILP problems as in (4). Illustrative examples are presented throughout
the sections to provide details of the steps of the proposed algorithms.
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2 Multi-parametric OFC MILP problems

Consider the formulation in (3), rewritten in a more compact mathematical form [34]:

z(θ) = min
x,y

(c + Hθ)T x + (d + Lθ)T y,

s.t. Ax + Ey ≤ b,

�x + �y = γ,

x ∈ X ⊆ R
n, y ∈ {0, 1}m,

θ ∈ � = {θ : θ ∈ R
s, Gθ ≤ e},

(5)

here, c, d, H and L are real matrices with appropriate dimensions. The presence of paramet-
ric uncertainties in the objective function introduces two types of bilinear terms—θT · H T · x
and θT · H T · y—hence, this is a non-convex objective function. Here, we propose a two-stage
global optimisation procedure for the solution of (5), described next.

2.1 Master MINLP problem

In the master problem, we formulate a global optimisation problem considering the varying
parameters, θ , as bounded optimisation variables:

zM (θ) = min
x,y,θ

(c + Hθ)T x + (d + Lθ)T y,

s.t. Ax + Ey ≤ b,

�x + �y = γ,

x ∈ X ⊆ R
n, y ∈ {0, 1}m,

θ ∈ � = {θ : θ ∈ R
s, Gθ ≤ e}.

(6)

Problem (6) is solved using a global optimisation solver [3,4,30,61]. In this work, we use
the commercial package GAMS/BARON [53] as our global optimisation solver. From the
solution obtained for Problem (6), the binary vector is fixed, y = ȳ, and is an entry data in
the slave problem, which is described next.

2.2 Slave mp-LP problem

Fixing y = ȳ, (5) results in the following formulation:

zS(θ) = (d + Lθ)T ȳ + min
x

cT x + θT H T x,

s.t. Ax ≤ b′,
�x = γ ′,
x ∈ X ⊆ R

n, y ∈ {0, 1}m,

θ ∈ � = {θ : θ ∈ R
s, Gθ ≤ e},

(7)

where, b′ = b − E ȳ, and γ ′ = γ − �ȳ. Problem (7) involves bilinear terms, and hence, it
corresponds to a multi-parametric global optimisation problem.

In principle, (7) can be addressed by applying the global optimisation algorithm of Dua
et al. [21]. However, here we explore the structure of (7) to design a new mp-LP algorithm
suitable for OFC mp-LP problems.
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2.2.1 Algorithm for the OFC mp-LP problem

The Fritz John first-order conditions state that there exist p + q + 1 real numbers ν, λ, µ,
not all zero, such that [40]:

L(x, ν, λ, µ, θ) = ν f (x, θ) +
p∑

i=1

λi gi (x, θ) +
q∑

j=1

µ j h j (x, θ),

∇xL(x, ν, λ, µ, θ) = 0,

λi gi (x, θ) = 0, ∀i = 1, . . . , p,

h j (x, θ) = 0, ∀ j = 1, . . . , q,

ν, λi , µ j ≥ 0,

(8)

where, L(x, ν, λ, µ) is the Lagrangian, ν ∈ R, λ ∈ R
p, µ ∈ R

q , are the Lagrange multi-
pliers, f (x, θ) = cT x + θT H T x , g(x, θ) = Ax − b′ ≤ 0 and h(x, θ) = �x − γ ′ = 0.
Assuming we seek a Karush–Kuhn–Tucker (KKT) optimum [9], ν = 1, (8) is rewritten in a
more compact form:

F(η, θ) =
⎡

⎣
∇xL

	g(x, θ)

h(x, θ)

⎤

⎦ = 0, (9)

here, η = [x, λ, µ] and 	 is a diagonal matrix with 	i i = λi , i = 1, . . . , p. Then, deriving
(9) with respect to η and to θ , and using the chain rule, we obtain an expression of the optimal
solution of (7) as an explicit function of θ , as shown next in Theorem 1.

Theorem 1 Basic Sensitivity Theorem [26]: Let θ0 be a vector of parameter values and
(x0, λ0, µ0) a KKT triple corresponding to (8), where λ0 is nonnegative and x0 is feasi-
ble in (7). Also assume that (i) strict complementary slackness (SCS) holds, (ii) the bind-
ing constraint gradients are linearly independent (LICQ: Linear Independence Constraint
Qualification), and (iii) the second-order sufficiency conditions (SOSC) hold. Then, in the
neighbourhood of θ0, there exists a unique, once continuously differentiable function, η(θ) =
[x(θ), λ(θ), µ(θ)], satisfying (8) with η(θ0) = [x(θ0), λ(θ0), µ(θ0)], where x(θ) is a unique
isolated minimiser of (7), and

⎛

⎜⎝

dx
dθ
dλ
dθ
dµ
dθ

⎞

⎟⎠ = − (M0)
−1 N0, (10)

where, M0 and N0 are the Jacobians of (9) with respect to η and θ ,

M0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇2
xxL ∇x g1 · · · ∇x gp ∇x h1 · · · ∇x hq

λ1∇T
x g1 g1
...

. . . 0
λp∇T

x gp gp

∇T
x h1
... 0 0

∇T
x hq

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

N0 = (∇2
θxL, λ1∇T

θ g1, . . . , λp∇T
θ gp,∇T

θ h1, . . . ,∇T
θ hq)T .
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Proof See [27, p. 72]. �	

Note that the assumptions stated in the theorem above ensure M0 is non-singular in the
neighbourhood of the solution point (η0, θ0), and hence, invertible [41].

Corollary 1 First-order estimation of [x(θ), λ(θ), µ(θ)], near θ = θ0 [27]: Under the
assumptions of Theorem 1, a first-order approximation of [x(θ), λ(θ), µ(θ)] in the neigh-
bourhood of θ0 is,

⎡

⎣
x(θ)

λ(θ)

µ(θ)

⎤

⎦ =
⎡

⎣
x0

λ0

µ0

⎤

⎦ − (M0)
−1 · N0 · (θ − θ0) + o(||θ ||), (11)

where (x0, λ0, µ0) = [x(θ0), λ(θ0), µ(θ0)], M0 = M(θ0), N0 = N (θ0), andφ(θ) = o(||θ ||)
means that φ(θ)/||θ || → 0 as θ → θ0.

From Theorem 1, it is obvious that the matrices M0 and N0 are independent of θ , i.e.
it is equally applicable to (7) as it is for the righ-hand-side (RHS) case considered in Dua
and Pistikopoulos [18]. Theorem 1 clearly states that the first order estimation of the explicit
optimal function, (11), is the general solution inside the incumbent critical region, where a
critical region is defined as a subset of the parameters space inside which the same set of
active constraints applies.

The main difference between the RHS case and the OFC mp-LP problem, in (7), is the
non-null Hessian of the Lagrangian with respect to θ and x , i.e. ∇θxL = H T . Yet, all
matrices in (11) are constant, and hence, the explicit expression is indeed valid inside the
entire critical region. By substituting the appropriate variables, (11) results in the following
expression for (7):

⎡

⎣
x(θ)

λ(θ)

µ(θ)

⎤

⎦ =
⎡

⎣
x0

λ0

µ0

⎤

⎦ −
⎡

⎣
0 AT �T

	A diag (g) 0
� 0 0

⎤

⎦
−1

η0

·
⎡

⎣
H T

0
0

⎤

⎦

η0

· (θ − θ0). (12)

The analytical expressions in (12) are used to derive the boundaries of the critical region
by checking the conditions stated in the following Theorem 2.

Theorem 2 [49] Let (η0, ν0, θ0) be a solution to (8). Additionally, assume that f , g and h
are twice continuously differentiable in a neighbourhood of (x0, θ0), and define two index
sets: A and , and a corresponding tangent space T̄ by,

= {i : 1 ≤ i ≤ p, gi (x0, θ0) = 0}, (13a)

A = {i ∈ : λi �= 0}, (13b)

T̄ = {t ∈ R
n : [∇x h(x0, θ0)]

T y = 0, [∇x gi (x0, θ0)]
T y = 0,∀i ∈ }. (13c)

Then a necessary and sufficient condition for ∇η F, i.e. M0, to be non-singular is that, each
of the following three conditions hold:

(i) = A;
(ii) S � {∇x gi (x0, θ0) ∪ ∇x h j (x0, θ0), i ∈ , j = 1, . . . , q} is a linearly independent

collection of q + ∣∣ ∣∣ vectors, where | · | denotes cardinality;
(iii) The Hessian of the Lagrangian ∇xL is non-singular on the tangent space T̄ .
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If ∇η F(η0, θ0) is non-singular, there exist neighbourhoods B1 of θ0 and B2 of (η0, θ0) and
a function φ ∈ C1(B1) such that F(φ(θ), θ) = 0,∀θ ∈ B1 and φ(θ0) = η0. This solution is
locally unique in the sense that if (η, θ) ∈ B2 and F(η, θ) = 0, then η belongs to the manifold
defined by φ, i.e., η = φ(θ). Furthermore, if f, g and h are Ck(k ≥ 2) (C∞ or real analytic)
then φ is Ck−1(C∞ or real analytic, respectively) on B1.

Proof See Poore and Tiahrt [49]. �	
Essentially, the singular point/surface occurs when at least one of the three conditions

enumerated in Theorem 2 is violated: (i) loss of strict complementarity, which is identified
by any change of sign or occurrence of zeros in any of the inactive constraints or active
inequality Lagrange multiplier; (ii) violation of the linear independence constraint qualifi-
cation, identified by a change of sign or the occurrence of a zero in ν; and (iii) singularity
of the Hessian of the Lagrangian on the tangent space to the active constraints, which is
identified by a change in in(∇2

x LT ), where the operator in (·) represents the inertia of the
matrix. By inertia of a matrix we understand the number of positive, negative and zero
eigenvalues [39].

However, since we have a KKT point computed in the master problem, (6), and an explicit
optimal function, (12), the limits for the validity of these explicit expressions can be resumed
by the following [20]:

λ̃(x(θ)) ≥ 0, (14)

ğ(x(θ)) ≤ 0, (15)

where, λ̃ represents the set of Lagrange multipliers of the active constraints, A, and ğ the set
of inactive constraints.

The parameters’ initial area is further explored using the methodology described by Dua
and Pistikopoulos [18]—see Appendix. At the end, a complete map of all critical regions
is obtained. Each critical region is associated with a corresponding analytical expression
as in (12). By substituting this expression in zS , (7), and being the second order sufficient
conditions satisfied, a valid upper bound is obtained for (5).

The OFC mp-LP algorithm was implemented in Matlab.

Remark 1 Note that optimisation variables, x , in (12), are independent of θ , inside each crit-
ical region, x �= f (θ); this is expected as (7) has uncertainty only in the objective function
and it is linear with respect to x . Of course, the varying parameters, θ , continue to affect the
optimal value function, z∗.

2.3 The algorithm

Between every master–slave iteration, we need to (i) introduce integer and parametric cuts
in the master problem (MINLP), in order to avoid already examined 0–1 combinations and
cut off worse solutions. For (i), we introduce the following constraints [18]:

∑

j∈J ik

yik
j −

∑

j∈Lik

yik
j ≤ |J ik | − 1, k = 1, . . . , K i , (16)

(c + Hθ)T x + (d + Lθ)T y ≤ zS(θ)i , (17)

where, J ik � { j : yik
j = 1} and Lik � { j : yik

j = 0}, the operator | · | corresponds to

cardinality and K i is the number of integer solutions analysed in a specific critical region.
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Equations 16 and 17 exclude integer solutions already visited, and integer solutions with
higher values than the current upper bound, zS , respectively.

For (ii), since the optimal value functions for the slave problem are linear, the comparison
procedure described in Acevedo and Pistikopoulos [1] is used.

The algorithm terminates when the master problem, (6), is declared infeasible. The algo-
rithmic steps are summarised in Fig. 1 and Table 4.

Next, we apply the steps of the proposed algorithm to an illustrative example.

2.4 Example 1

In a chemical engineering company, the decision maker has to choose between Reactor I,
which is expensive but has a high rate of conversion, and Reactor II, which is more economic
but has a lower rate of conversion, Fig. 2 (adapted from [13]).

Due to the presence of uncertainty in the cost coefficients, the multi-parametric OFC
MILP problem results:

Fig. 1 Algorithm for OFC mp-MILP problems
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Table 4 Steps of the algorithm for OFC mp-MILP problems

Step 0. (Initialization) Define an initial region of �, CR, with best upper bound
ẑ∗(θ) = ∞, and an initial integer solution, ȳ

Step 1. (Slave subproblem—multiparametric LP problem) For each region with a new
integer solution, ȳ: (a) solve the mp-LP subproblem (7) to obtain a set of
parametric upper bounds, ẑ(θ) = z∗

S , and the corresponding critical regions CR;
(b) if ẑ(θ) ≤ z∗

S(θ) for some region of θ , update the best upper bound function,
ẑ(θ), and the corresponding integer solutions, y∗; (c) if an infeasibility is found
in some region CR, go to Step 2

Step 2. (Master subproblem—MINLP problem) For each region CR, formulate and solve
to global optimality the MINLP master subproblem, (6), (i) treating θ as an
optimisation variable, (ii) introducing an integer cut (16) and (iii) introducing a
parametric cut (17). Return to Step 1 with new integer solutions and
corresponding CRs

Step 3. (Convergence) The algorithm terminates in a region where the solution of the
master MINLP subproblem is infeasible. Then, the optimal parametric solution
is given by the current upper bounds ẑ∗(θ)

Fig. 2 Superstructure of
illustrative example 1

xI

xII

zI

zII

min
x1,x2,yI ,yI I

(6.4 + 0.25θ1)x1 + (6.0 + 0.17θ2)x2

+ (7.5 + 0.3θ1)yI + (5.5 + 0.15θ2)yI I ,

s.t. 0.8 · x1 + 0.67 · x2 = 10,

x1 ≤ 20yI ,

x2 ≤ 20yI I ,

x1, x2 ≥ 0,

0 ≤ θ1, θ2 ≤ 20,

yI , yI I ,∈ {0, 1}.

(18)

The solution steps of the algorithm in Table 4 and Fig. 1 are listed next.

Step 0. (initialization) Solve Problem (18) considering θ as being optimisation variables,
ȳ = (1, 0).
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Step 1. (k = 1, slave subproblem) Fix y = ȳ. The mp-LP problem in (7) is formulated
as:

min
x1,x2

(6.4 + 0.25θ1)x1 + (6.0 + 0.17θ2)x2 + (7.5 + 0.3θ1),

s.t. 0.8 · x1 + 0.67 · x2 = 10,

0 ≤ x1 ≤ 20, 0 ≤ x2 ≤ 0,

0 ≤ θ1, θ2 ≤ 20,

yI , yI I ,∈ {0, 1}. (19)

The solution of (19) is computed using the OFC mp-LP algorithm:
⎧
⎪⎪⎨

⎪⎪⎩

x1 = 12.5,

x2 = 0,

0 ≤ θ1 ≤ 20,

0 ≤ θ2 ≤ 20.

Step 2. (k = 1, master subproblem) Solve the master problem in (6) with two additional
constraints, due to (16) and (17):

y1 − y2 ≤ 0, (20)

(6.4 + 0.25θ1)x1 + (6.0 + 0.17θ2)x2

+ (7.5 + 0.3θ1)yI + (5.5 + 0.15θ2)yI I ≤ 3.425θ1 + 87.5. (21)

The solution is obtained using the commercial package GAMS/BARON [53]:
ȳ = (0, 1).

Step 1. (k = 2, slave subproblem) By fixing y = (0, 1), the solution of (7) results in:
⎧
⎪⎪⎨

⎪⎪⎩

x1 = 0,

x2 = 14.9254,

0 ≤ θ1 ≤ 20,

0 ≤ θ2 ≤ 20.

Step 1. (k = 2, comparison of solutions) Solutions valid in 0 ≤ θ1, θ2 ≤ 20:

Solution 1 Solution 2

x1 = 12.5 x1 = 0
x2 = 0 x2 = 14.9254
y1 = 1 y1 = 0
y2 = 0 y2 = 1
z = 87.5 + 3.4250θ1 z = 95.0524 + 2.6873θ2

The intersection of the two planes is given by the line:

3.4250θ1 − 2.6873θ2 = 7.524,

below which z1
S(θ) is valid.
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Table 5 Map of optimal
parametric solutions for
Example 1

Region Solution

⎧
⎨

⎩

θ1 ≥ 0
0 ≤ θ2 ≤ 20
3.4250θ1 − 2.6873θ2 ≤ 7.524

⎫
⎬

⎭
CR1

x1 = 0
x2 = 14.9254
y1 = 0
y2 = 1

⎧
⎨

⎩

θ1 ≤ 20
0 ≤ θ2 ≤ 20
3.4250θ1 − 2.6873θ2 ≥ 7.524

⎫
⎬

⎭
CR2

x1 = 12.5 + 1.25θ2
x2 = 0
y1 = 1
y2 = 0

Step 2. (k = 2, master problem) Solve Problem (6) with four additional constraints:

y1 − y2 ≤ 0, (22)

y2 − y1 ≤ 0, (23)

(6.4 + 0.25θ1)x1 + (6.0 + 0.17θ2)x2

+ (7.5 + 0.3θ1)yI + (5.5 + 0.15θ2)yI I ≤ 3.4250θ1 + 87.5, (24)

(6.4 + 0.25θ1)x1 + (6.0 + 0.17θ2)x2

+ (7.5 + 0.3θ1)yI + (5.5 + 0.15θ2)yI I ≤ 95.0524+2.6873θ2. (25)

The resulting problem is infeasible, and hence, the algorithm terminates. The final
solution is listed in Table 5.

3 Multi-parametric RIM MILP problems

In this section, we consider the formulation in (4), i.e. the general case with independent
varying parameters both in the objective function and the right-hand side of the constraints,
rewritten in a more compact mathematical form [34]:

z(θ) = min
x,y

(c + Hθ)T x + (d + Lθ)T y,

s.t. Ax + Ey ≤ b + Fθ,

�x + �y = γ + �θ, (26)

x ∈ X ⊆ R
n, y ∈ {0, 1}q ,

θ ∈ � = {θ : θ ∈ R
s, Gθ ≤ e},

where, b, γ , F and � are real matrices with appropriate dimensions. For the solution of (26),
we present in the following an extension of the algorithm presented in Sect. 2, which iterates
between two optimisation subproblems, a master MINLP problem and a slave multi-paramet-
ric problem. The principal difference is the comparison procedure between two parametric
solutions, since in this case the optimal value function is non-linear.

123



142 J Glob Optim (2009) 45:131–151

3.1 Master problem

By considering the parameters θ as optimisation variables, (26) results in the following
MINLP formulation [34]:

zM (θ) = min
x,θ,y

(c + Hθ)T x + (d + Lθ)T y,

s.t. Ax + Ey ≤ b + Fθ,

�x + �y = γ + �θ, (27)

x ∈ X ⊆ R
n, y ∈ {0, 1}q ,

θ ∈ � = {θ : θ ∈ R
s, Gθ ≤ e}.

Note that (27) involves bilinear terms in the objective function, thereby it is a non-convex
problem which requires a global optimisation procedure. The solution of (27) returns a new
binary vector, y = ȳ, to the slave problem, which is described next.

3.2 Slave problem

By fixing y = ȳ, the slave problem is formulated in the following way:

zS(θ) = (d + Lθ)T ȳ + min
x

cT x + θT H T x,

s.t. Ax ≤ b′ + Fθ,

�x ≤ γ ′ + �θ, (28)

x ∈ X ⊆ R
n, y ∈ {0, 1}m,

θ ∈ � = {θ : θ ∈ R
s, Gθ ≤ e}.

where, b′ = (b − E ȳ) and γ ′ = (γ − �ȳ). Once again, Problem (28) is solved using a
modified version of the original mp-LP algorithm [20]. As shown before, applying Eq. 11 to
problem (28) results in:

⎡

⎣
x(θ)

λ(θ)

µ(θ)

⎤

⎦ =
⎡

⎣
x0

λ0

µ0

⎤

⎦ −
⎡

⎣
0 AT �T

	A diag (g) 0
� 0 0

⎤

⎦
−1

η0

·
⎡

⎣
H T

F
�

⎤

⎦

η0

· (θ − θ0). (29)

The RIM mp-LP algorithm was implemented in Matlab.

Remark 2 Note that in Eq. 29, contrary to (12), N0 is a full rank matrix and therefore the
explicit expression of the optimisation variables depends on the parameters.

3.3 The algorithm

Between every master–slave iteration, we need to (i) introduce integer and parametric cuts in
the master MINLP problem (Eqs. 16 and 17, respectively), and (ii) compare the parametric
solutions obtained in the slave problem in order to retain the best. While the cuts are identical
to the OFC problem, the comparison of different solutions of the slave problem is itself a
global optimisation problem, since in this case the optimal value functions are non-linear.
Here, we address this issue by storing all different optimal solutions valid inside overlapping
regions and computing the optimum solution online by direct value comparisons (enclosure
of all solutions—see [20]).

The algorithm terminates when the master problem is infeasible.

123



J Glob Optim (2009) 45:131–151 143

Table 6 Steps of the algorithm for RIM mp-MILP problems

Step 0. (Initialization) Define an initial region of �, CR, with best upper bound
ẑ∗(θ) = ∞, and an initial integer solution, ȳ

Step 1. (Slave subproblem—multiparametric LP problem) For each region with a new
integer solution, ȳ: (a) solve the mp-LP subproblem (28) to obtain a set of
parametric upper bounds, ẑ(θ) = z∗

S , and the corresponding critical regions CR;
(b) if ẑ(θ) ≤ z∗

S(θ) for some region of θ , update the best upper bound function,
ẑ(θ), and the corresponding integer solutions, y∗; (c) if an infeasibility is found
in some region CR, go to Step 2

Step 2. (Master subproblem—MINLP problem) For each region CR, formulate and solve
to global optimality the MINLP master subproblem, (27), (i) treating θ as an
optimisation variable, (ii) introducing an integer cut (16) and (iii) introducing a
parametric cut (17). Return to Step 1 with new integer solutions and
corresponding CRs

Step 3. (Convergence) The algorithm terminates in a region where the solution of the
master MINLP subproblem is infeasible. Then, the optimal parametric solution
is given by the current upper bounds ẑ∗(θ)

The algorithmic steps are summarised in Table 6, and are described in detailed in two
illustrative problems, shown next.

3.4 Example 2

Consider again Example 1 in Fig. 2, but now with uncertainty involving both the customer’s
demand and the objective function, as follows:

min
x1,x2,yI ,yI I

(6.4 + 0.25θ1)x1 + 6.0x2 + (7.5 + 0.3θ1)yI + 5.5yI I ,

s.t. 0.8 · x1 + 0.67 · x2 ≥ 10 + θ2,

x1 ≤ 40yI ,

x2 ≤ 40yI I ,
(30)

x1, x2 ≥ 0,

0 ≤ θ1 ≤ 20,

0 ≤ θ2 ≤ 10,

yI , yI I ,∈ {0, 1}.

We apply the solution steps of the proposed algorithm in Table 6.

Step 0. (initialisation) Solve Problem (30) considering θ as being optimisation variables,
ȳ = (1, 0).

Step 1. (k = 1, slave subproblem) Fix y = ȳ. The RIM mp-LP problem is formulated as:

min
x1,x2

(6.4 + 0.25θ1)x1 + 6.0x2 + (7.5 + 0.3θ1),

s.t. 0.8 · x1 + 0.67 · x2 ≥ 10 + θ2, (31)

0 ≤ x1 ≤ 40, 0 ≤ x2 ≤ 0,

0 ≤ θ1 ≤ 20, 0 ≤ θ2 ≤ 10.
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The solution of (31) is computed using the RIM mp-LP algorithm:
⎧
⎪⎪⎨

⎪⎪⎩

x1 = 12.5 + 1.25 · θ2

x2 = 0,

0 ≤ θ1 ≤ 20,

0 ≤ θ2 ≤ 10.

Step 2. (k = 1, master subproblem) Solve the master problem in (27) with two additional
constraints, due to (16) and (17):

y1 − y2 ≤ 0, (32)

(6.4 + 0.25θ1)x1 + 6.0x2 + (7.5 + 0.3θ1)yI

+ 5.5yI I ≤ 87.5 + 3.425θ1 − 0.3125θ1θ2 + 8θ2. (33)

The solution is obtained using the commercial package GAMS/BARON [53]: ȳ =
(0, 1).

Step 1. (k = 2, slave problem) By fixing y = ȳ, the solution of (28) is:
⎧
⎨

⎩

x1 = 0,

x2 = 14.9254 + 1.4925θ2,

0 ≤ θ1 ≤ 20, 0 ≤ θ2 ≤ 10.

Step 1. (k = 2, comparison of solutions) Solutions valid in 0 ≤ θ1 ≤ 20, 0 ≤ θ2 ≤ 10:

Solution 1 Solution 2

x1 = 12.5 + 1.25θ2 x1 = 0
x2 = 0 x2 = 14.9254 + 1.49254θ2

y1 = 1 y1 = 0
y2 = 0 y2 = 1
z = 87.5 + 3.425θ1 − 0.3125θ1θ2 + 8θ2 z = 8.955θ2 + 95.0524

In this specific case, we can compute the intersection of the two solutions:

−0.955θ2 − 0.3125θ1θ2 − 7.5524 + 3.425θ1 = 0.

Otherwise, we store all parametric solutions of the slave problems and compute
on-line the best decision.

Step 2. (k = 2, master problem) Solve Problem (27) with four additional constraints:

y1 − y2 ≤ 0, (34)

y2 − y1 ≤ 0, (35)

(6.4 + 0.25θ1)x1 + 6.0x2 + (7.5 + 0.3θ1)yI

+ 5.5yI I ≤ 87.5 + 3.425θ1 − 0.3125θ1θ2 + 8θ2, (36)

(6.4 + 0.25θ1)x1 + 6.0x2 + (7.5 + 0.3θ1)yI

+ 5.5yI I ≤ 8.955θ2 + 95.0524. (37)

The resulting problem is infeasible, and thus, the algorithm terminates. The final
solution is listed in Table 7.
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Table 7 Map of critical regions for Problem (30)

Region Solution

⎧
⎨

⎩

0 ≤ θ1 ≤ 20
0 ≤ θ2 ≤ 10
−0.955θ2 − 0.3125θ1θ2 + 3.425θ1 ≤ 7.5524

⎫
⎬

⎭
CR1

x1 = 12.5 + 1.25θ2
x2 = 0
y1 = 1
y2 = 0

⎧
⎨

⎩

0 ≤ θ1 ≤ 20
0 ≤ θ2 ≤ 10
0.955θ2 + 0.3125θ1θ2 − 3.425θ1 ≤ −7.5524

⎫
⎬

⎭
CR2

x1 = 0
x2 = 14.9254 + 1.4925θ2
y1 = 0
y2 = 1

II

III

II

III

Fig. 3 Superstructure of the illustrative example 3

3.5 Example 3

This example is a variant of a process synthesis problem described by Biegler et al. [13],
shown in Fig. 3. A chemical product C is produced using either process unit I I or I I I ,
both of which use chemical B as raw material; on the other hand, B can either be directly
purchased or manufactured using process I and purchasing raw material A.

Moreover, the decision is subject to uncertainty in the operation cost and product demand.
The uncertainty—θ1, θ2—is assumed to be unstructured and bounded. The multi-parametric
RIM MILP problem is posed as follows:

min −18 · C + (10 · yI + 15 · yI I + 20 · yI I I )

+(2.5 · A · yI + (4 + θ1) · BI I · yI I + 5.5 · BI I I · yI I I ),

s.t. C = 0.82 · BI I + 0.95 · BI I I ,

2 ≤ C ≤ 5 + θ2,

A ≤ 16 · yI ,

yI I + y I I I ≥ 1,

BI I − 30 · yI I ≤ 0,

BI I I − 30 · yI I I ≤ 0,
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1

2

3

4

5

6

7

8

9

Fig. 4 Map of critical regions of Problem (38)

BI I + BI I I − B P − 0.9 · A = 0,

0 ≤ θ1 ≤ 5,

0 ≤ θ2 ≤ 10, (38)

yI , yI I , yI I I ∈ {0, 1},
C, A, B P, BI I , BI I I ≥ 0.

The final solution is depicted in Fig. 4 and Table 8.

Remark 3 Although we focus on OFC and RIM classes of mp-MILP problems, the procedure
is still valid when matrices E,� also depend linearly on the parameters, as follows:

z(θ) = min
x,y

(c + Hθ)T x + (d + Lθ)T y,

s.t. Ax + (e1 + E2θ)y ≤ b + Fθ,

�x + (φ1 + �2θ)y = γ + �θ, (39)

x ∈ X ⊆ R
n, y ∈ {0, 1}q ,

θ ∈ �,

because, fixing the binary vector, y = ȳ, to the solution obtained in the master subproblem,
(39) is rewritten as a RIM mp-LP problem:

zS(θ) = (d + Lθ)T ȳ + min
x

cT x + θT H T x,

s.t. Ax ≤ b′ + F ′θ,

�x ≤ γ ′ + � ′θ, (40)

x ∈ X ⊆ R
n, y ∈ {0, 1}m,

θ ∈ �,

where, b′ = (b − e1 ȳ), γ ′ = (γ − φ1 ȳ), F ′ = (F − E2 ȳ) and � ′ = (� − �2 ȳ).

4 Concluding remarks

We have presented a novel optimisation framework for the global solution of general mp-
MILP problems, involving uncertainty in the objective function and the right-hand side of
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Table 8 Solution of Problem 38 (x = �θ + ω)

Region Integer solution Continuous solution

ȳ � ω

.

.

.

CR7 2.42 ≤ θ1 ≤ 5
8.68 ≤ θ2 ≤ 10

{
1, 0, 1

} ⎡

⎢⎢⎢⎣

0 1
0 0
0 1.0526
0 0
0 1.0526

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

5
16

−9.1368
0

5.2632

⎤

⎥⎥⎥⎦

CR8 2.42 ≤ θ1 ≤ 5
6.81 ≤ θ2 ≤ 8.68

{
1, 0, 1

} ⎡

⎢⎢⎢⎣

0 1
0 1.1696
0 0
0 0
0 1.0526

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

5
5.8480

0
0

5.2632

⎤

⎥⎥⎥⎦

CR9 2.42 ≤ θ1 ≤ 5
0 ≤ θ2 ≤ 6.80

{
1, 0, 1

} ⎡

⎢⎢⎢⎣

0 1
0 0
0 1.0526
0 0
0 1.0526

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

5
16

−9.1368
0

5.2632

⎤

⎥⎥⎥⎦

{
0, 0, 1

} ⎡

⎢⎢⎢⎣

0 1
0 0
0 1.0526
0 0
0 1.0526

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

5
0

5.2632
0

5.2632

⎤

⎥⎥⎥⎦

the constraints. Based on our previous work on multi-parametric programming [18,21,46], a
novel mp-LP algorithm was developed, which overcomes the presence of the non-convexities
due to bilinear terms. This is then used in an efficient procedure, which iterates between a
master MINLP subproblem, solved to global optimality, and a slave mp-LP subproblem. A
number of examples are also presented.

The proposed approach has many applications in hybrid and robust control—a topic which
is currently being investigated and will be reported elsewhere [35].

Acknowledgements Financial support from EPSRC (GR/T02560/01) and Marie Curie European Project
PRISM (MRTN-CT-2004-512233) is gratefully acknowledged.

Appendix: Definition of rest of the region

Given an initial region, C RI G and a region of optimality, C RQ such that C RQ ⊆ C RI G , a
procedure is described in this section to define the rest of the region, C Rrest = C RI G −C RQ .
For the sake of simplifying the explanation of the procedure, consider the case when only two
parameters, θ1 and θ2, are present (see Fig. 5), where C RI G is defined by the inequalities:
{θ L

1 ≤ θ1 ≤ θU
1 , θ L

2 ≤ θ2 ≤ θU
2 } and C RQ is defined by the inequalities: {C1 ≤ 0, C2 ≤

0, C3 ≤ 0} where C1, C2 and C3 are linear in θ . The procedure consists of considering one
by one the inequalities which define C RQ . Considering, for example, the inequality C1 ≤ 0,
the rest of the region is given by, C Rrest

1 : {C1 ≥ 0, θ L
1 ≤ θ1, θ2 ≤ θU

2 }, which is obtained
by reversing the sign of inequality C1 ≤ 0 and removing redundant constraints in C RI G

(see Fig. 6). Thus, by considering the rest of the inequalities, the complete rest of the region
is given by: C Rrest = {C Rrest

1 ∪ C Rrest
2 ∪ C Rrest

3 }, where C Rrest
1 , C Rrest

2 and C Rrest
3 are
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Fig. 5 Critical regions, C RI G

and C RQ

C1 < 0

C3 < 0

C2 < 0

CR
Q

CR
IG

θU
2

θL
2

θL
1 θU

1

θ

θ1

2

given in Table 9 and are graphically depicted in Fig. 7. Note that for the case when C RI G is
unbounded, simply suppress the inequalities involving C RI G in Table 9.

Fig. 6 Division of critical
regions—Step 1

C1 > 0

CR

θ2
U

θ2
L

θ1
L θ1

U

θ

θ1

2

rest
1

Table 9 Definition of rest of the
regions

Region Inequalities

C Rrest
1 C1 ≥ 0, θ L

1 ≤ θ1, θ2 ≤ θU
2

C Rrest
2 C1 ≤ 0, C2 ≥ 0, θ1 ≤ θU

1 , θ2 ≤ θU
2

C Rrest
3 C1 ≤ 0, C2 ≤ 0, C3 ≥ 0, θ L

1 ≤ θ1 ≤ θU
1 , θ L

2 ≤ θ2
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Fig. 7 Division of critical
regions—rest of the regions
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